
Introduction to atmospheric 
inversions with examples of 
applications in Africa
Dr Alecia Nickless
alecia.nickless@bristol.ac.uk

11 June 2019
Flux Measurements Winter School, Vuwani, South Africa

2

mailto:alecia.nickless@bristol.ac.uk


Overview

§ Bayesian inversion modelling approach
§ Prior information: CO2, CH4, and N2O
§ Sensitivity matrix
§ Background concentration
§ Observation errors
§ Estimates of CO2 fluxes for Cape Town
§ Optimal network for atmospheric monitoring in Africa
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So you’ve got some atmospheric 
measurements … now what?
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Bayesian inverse modelling
§ Statistical method which calculates fluxes from CO2 concentrations, 

high resolution meteorology and atmospheric transport.

§ Regularizes the problem by incorporating prior information about the 
flux components.

§ Relies on high precision measurements of CO2.

§ Requires information about boundary concentrations when 
performing a mesoscale inversion
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Bayesian solution
Linear relationship between concentrations and fluxes:

𝐜"#$ = 𝐇𝐬
Bayesian cost function:

𝐽 𝐬 = )
*
((𝐜"#$ − 𝐜).𝐂𝐜0) (𝐜"#$ − 𝐜) + (𝐬 − 𝐬𝟎).𝑪𝐬𝟎

0) (𝐬 − 𝐬𝟎)
Posterior flux estimates:

3𝐬𝑩𝑳𝑺 = 𝐬7 + 𝐂9: 𝐇
. 𝐇𝐂9:𝐇

. + 𝐂𝐜
0𝟏(𝐜 − 𝐇𝐂9:)

Posterior covariance matrix:
𝐂𝐬 = (𝐇𝐂𝐜0𝟏𝐇 + 𝐂9: )

0𝟏

= 𝐂9: − 𝐂9: 𝐇
. 𝐇𝐂9:𝐇

. + 𝐂𝐜
0𝟏
𝐇𝐂9:

Tarantola, 20056



Bayesian Inversion

§ Typically assumes that the flux uncertainties are Gaussian with 
covariance matrix 𝐂9:

§ and that the observation errors are Gaussian with covariance matrix 
𝐂𝐜

§ But this can be a problem when fluxes are only positive or when the 
error distributions have long tails.
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Prior Information

§ Need to start off with good initial estimates of the fluxes in your 
domain.

§ The inversion then corrects these fluxes according to the 
observations.

§ The extent to which the inversion can correct the flux depends on 
– The uncertainty assigned to the fluxes (the smaller the uncertainty the 

smaller the change the inversion can make)
– How well the observation network views the domain
– How uncertain the modelled observations are (the greater the uncertainty 

the smaller the constraint of the observations)
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CO2 Priors

§ Need to consider both biogenic fluxes and fossil fuel emissions.
§ Make sure to carefully consider all the sources. 
§ Getting the spatial allocation of fluxes more or less correct, at least 

relatively speaking, makes a big difference to the inversion results.
§ Fossil fuel fluxes can be specified as fixed if these are well 

constrained in the domain. Although this is rarely the case.
§ Fossil fuel and natural fluxes can be solved separately.
§ NEE from models has large errors associated with it.
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CO2 Priors

§ You can solve for a single flux in each biome (which can cover 
several pixels) or solve for each pixel.

§ You can also solve for a scale factor instead of the fluxes.
§ The spatial scale of these fluxes largely determines the 

computational cost of the inversion. 
§ The spatial and temporal scale of the fluxes determines the control 

vector or basis function – 𝐬𝟎.
§ Although you might start off with lat / lon grids of spatial fluxes, 

these get collapsed into a vector. Make sure you know how to turn 
the vector back into you lat / long grid.
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CO2 flux uncertainties

§ Fossil fuel flux uncertainties are dependent on how well the anthropogenic 
activities are quantified. Normally, these emissions are always positive.

𝑠== = 𝐴𝐸
§ Uncertainties can be quantified using error propagation techniques

𝐶ABB = 𝑠==
*
(
𝛿𝐴
𝐴
)* (

𝛿𝐸
𝐸
)*

Where 𝛿𝐴 is the uncertainty in the activity data and 𝛿𝐸 is the uncertainty in 
the emission factor.
§ Another approach is to assign a percentage uncertainty. This is usually the 

approach when using a global product like EDGAR or ODIAC, which is 
based on population statistics and National Inventory reporting.
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CO2 flux uncertainties
§ Biogenic fluxes can be derived from from a land surface exchange 

models or digital global vegetation models (DGVMs). 
§ These models usually give estimates of net ecosystem exchange 

(NEE), ecosystem respiration (Re), and gross primary production 
(GPP).

NEE = Re + GPP
§ NEE can be positive or negative depending on which dominates.
§ Assigning percentage based uncertainties to NEE usually leads to 

uncertainties that are too small. So should rather base uncertainty 
on the GPP component.
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CH4 Priors
§ Need to account for CH4 fluxes 

from:
– Release from animals
– Coal mining
– Pipeline leakage from natural gas
– Venting of natural gas at wells
– Release from landfills
– Soil absorption
– Termites
– Swamps
– Wetlands
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CH4 Priors

§ CH4 fluxes are mainly positive. Therefore flux uncertainties are usually 
assumed to be log-normally distributed or to have a truncated Gaussian 
distribution. 

§ The solutions for the posterior fluxes and uncertainties need to be adapted 
to accommodate the change in assumptions.

§ If using a truncated Gaussian, any negative posterior fluxes are made to 
equal zero.

§ Log-normal distributions usually require iterative methods to solve for the 
fluxes.

§ Global inversions or inversions of long periods need to account of loss of 
methane in the atmosphere due to OH.
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CH4 flux uncertainties

§ These are usually made proportional to the prior flux. 
§ Often set at 100% of the prior flux.
§ One approach has set the uncertainty of a pixel’s flux to the 

maximum of that pixel and surrounding pixels
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N2O Priors

N2O emissions from 
§ Agricultural soils
§ Fuel combustion
§ Animal waste management
§ Natural soil emissions
§ Oceanic fluxes (which can 

sometimes be negative)
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N2O Priors

§ N2O fluxes usually positive.
§ Uncertainties usually set to be proportional to prior N2O flux 

estimates
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Sensitivity Matrix
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Sensitivity Matrix

s1 s2 s3 … sm

c1 H11 H12 H13 … H1m

c2 H21 H22 H23 … H2m

c3 H31 H32 H33 … H3m

…

cn Hn1 Hn2 Hn3 … Hnm
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Sensitivity Matrix

§ Lagrangian particle dispersion model run in backward mode can 
provide the sensitivity of an observation to the sources and the 
boundary.

§ Example models are STILT, FLEXPART and NAME.
§ These models are driven by meteorological data from regional 

climate model.
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Background Influence

§ In a regional inversion the observed concentration depends on the 
fluxes within the domain and the concentration at the boundary of 
the domain.

§ These can be provided by a background site or modelled using a 
chemical transport model, e.g. using MOZART.
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Observation Errors

§ Measurement error (should be as small as possible)
§ Transport model error
§ Representation error
§ Aggregation error
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Estimates of CO2 fluxes from the city 
of Cape Town through Bayesian 

inverse modelling
Alecia Nickless
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Why Robben Island and Hangklip?

§ Place instruments around Cape Town City, in 
such a way to constrain estimate fluxes over 
the peninsula. 

§ Lighthouses provide ideal housing for 
instruments, with access to power, and the 
infrastructure to allow the inlet tube to be 
positioned at an adequate height.



Picarro Setup at Robben Island and Hangklip

• Each site is equipped with a 
Picarro Cavity Ring-Down 
Spectroscopy Analyser (CRDS 
G2301) for measuring CO2, CH4 
and H2O concentrations.

• Instruments were monitored via 
a 3G internet connection and 
visited approximately every two 
months.

• A rotating calibration standard 
was measured at all three sites, 
as well as a fully automatic 
calibration system for each 
individual site.



• Calibration system 
design with input 
from Dr. Martin 
Steinbacher of 
Empa and Ernst 
Brunke of SAWS.



Inter-calibration between three sites via
travelling standard, FA_01830

CO2 difference HKP – CPT: 0.13 ppm

CH4 difference HKP – CPT : -4 ppb

• CPT maintains 10 NOAA lab standards re-analysed every 
three years at the CCL, Boulder.

• CPT working standards (running once/week) are linked to 
these NOAA lab standards. 

• Inter-comparability differences between sites are 
significantly less than real differences observed.
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Percentage background CO2 and CH4 relative to
total data at three sites

Carbon Dioxide Methane

74% 60% 55% 76% 71% 65%



CPT

Cape Point angular distribution plots for CO2 and CH4
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RBD

Robben Island angular distribution plots for CO2 and CH4
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HKP

Hangklip angular distribution plots for CO2 and CH4

Wind data (courtesy K. Moir)
from Rooi Els; 10 km S of HKP. 
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Case histories using isentropic back-
trajectories (Hysplit Model) from NOAA-ESRL

Ø Trajectories are selected for eight major directions showing CO2 and
CH4 median values (several cases) at trajectory arrivals for the 3 sites.

Ø Certain instances give rise to similar air masses reaching 2 or all 3
sites thereby confirming comparable GHG concentrations.

Ø Alternatively, cases arise where background air flows over one site and
then over the Cape Town urban area before reaching another site.

Ø The latter provides an opportunity to assess GHG emissions from the
greater Cape Town region.    



Six hour back trajectory (Hysplit Model - NOAA-ESRL)

Source: http://www.esrl.noaa.gov/gmd



Trajectories from the north

RBD CPT HKP

HKP-CPT = 21 ppm CO2
HKP-CPT = 94 ppb CH4



Trajectories from the south

RBD-CPT = 5 ppm CO2
RBD-CPT = 49 ppb CH4



Trajectories from the west

RBD CPT HKP

RBD-CPT = 14 ppm CO2
RBD-HKP = 164 ppb CH4



Trajectories from the north-west

RBD CPT HKP

HKP-CPT = 8 ppm CO2
HKP-RBD = 187 ppb CH4
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Nickless et al.: Spatial and temporal disaggregation of 
anthropogenic CO2 emissions from the City of Cape 
Town, S. Afr. J. Sci., 111(11/12), Art. #2014-0387, 8 
pages, 2015.

City of 
Cape Town
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Sensitivity analysis – control vector

Nickless, A., Rayner, P. J., Scholes, R. J., Engelbrecht, F., and Erni, B.: An atmospheric inversion over the city of Cape Town: sensitivity 
analyses, Atmos. Chem. Phys. Discuss., doi: 10.5194/acp-2018-535, in review, 2018.



Error correlation

The off-diagonal elements of 𝐂𝐜 were calculated, based on the 
Balgovind correlation model as used in Wu et al. (2013)

𝐶A:;EFF 𝑠EFF;G, 𝑠EFF;I

= 𝐶A:;EFF 𝑠EFF;G 𝐶A:;EFF 𝑠EFF;I 1 + K
L
exp(− K

L
)

where 𝑠EFF;G and 𝑠EFF;I are NEE fluxes in pixels 𝑖 and 𝑗, 𝐶A:;EFF 𝑠EFF;G
and 𝐶A:;EFF 𝑠EFF;I the corresponding variances in the NEE flux 
uncertainties in pixels 𝑖 and 𝑗, the characteristic correlation length 𝐿 was 
assumed to be 1 km, and ℎ is the spatial distance pixels 𝑖 and 𝑗.

51



52

Sensitivity analysis – error correlations
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Sensitivity analysis – prior information











Combining information from inversions with different prior products



Model Assessment

𝜒)* =
1
𝑛
𝐇𝐬𝟎 − 𝐜 . 𝐇𝐂9:𝐇

. + 𝐂𝐜
0𝟏(𝐇𝐬𝟎 − 𝐜)

Where 𝑛 is the dimension of the data space.

The squared residuals from the inversion (squared differences between observed and 
modelled concentrations) should follow the 𝜒* distribution with degrees of freedom 
equal to the number of observations (Michalak et al., 2005; Tarantola, 2005). Dividing 
this statistic by the degrees of freedom should yield a 𝜒)* distribution. Values lower than 
one indicate that the uncertainty is too large, and values greater than one indicate that 
the uncertainty prescribed is lower than it should be. The error in the assignment of the 
uncertainty could be in either 𝐂𝐜 or 𝐂9: (or both).
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Reference Carbon Assessment ODIAC NEE Correlation Only
Obs Error Correlation 
Only No Correlation

Prior Flux (sd) -1336 (254) 5181 (32) 7635 (256) -1336 (254) -1336 (63) -1336 (63)
Posterior Flux (sd) -317 (189) 4045 (28) 5787 (195) -310 (189) -1281 (59) -1287 (59)
Uncertainty 
Reduction 25.6% 11.9% 23.6% 25.6% 7.5% 7.5%
Mean Chi-Squared 
Statistic 1.48 (0.55) 4.13 (1.24) 1.25 (0.49) 1.49 (0.54) 2.1 (0.78) 2.12 (0.79)

Double Fossil Fuel 
Uncertainty

Half Fossil Fuel 
Uncertainty

Double NEE 
Uncertainty Half NEE Uncertainty

Domestic Emissions 
Smoothed NEE Smoothed

Prior Flux (sd) -1336 (255) -1336 (254) -1336 (508) -1336 (128) -1916 (254) -1328 (126)
Posterior Flux (sd) -151 (190) -423 (189) -316 (365) -337 (100) -624 (189) -1707 (106)
Uncertainty 
Reduction 25.4% 25.7% 28.2% 21.9% 25.6% 15.8%
Mean Chi-Squared 
Statistic 1.21 (0.5) 1.86 (0.63) 1.03 (0.47) 2.22 (0.69) 1.41 (0.49) 1.17 (0.47)

Simple Obs Error
Simple Obs Error 
with Large Night

Simple Obs Error No 
Correlation

Obs Error Correlation 
Long

Mean Monthly 
Inversion Weekly Inversions

Prior Flux (sd) -1336 (254) -1336 (254) -1336 (254) -1336 (254) -1336 (126) -1220 (251)
Posterior Flux (sd) -325 (188) -338 (188) -579 (192) -497 (188) 662 (66) -687 (186)
Uncertainty 
Reduction 26.1% 26.1% 24.4% 26.0% 47.2% 25.8%
Mean Chi-Squared 
Statistic 2.17 (1.04) 1.88 (0.92) 2.25 (1.13) 7.3 (6.2) 1.43 (0.55) 1.54 (0.56)



Sensitivity Analysis – Size of Posterior Flux



Sensitivity Analysis – Uncertainty Reduction



An optimal observation 
network for Africa – using an 
inverse modelling approach



Uncertainty reduction

§ Solution for the posterior uncertainty covariance matrix does not require 
the observed concentrations from a site.

𝐂𝐬 = 𝐂9: − 𝐂9: 𝐇
. 𝐇𝐂9:𝐇

. + 𝐂𝐜
0𝟏
𝐇𝐂9:

§ Can compare to prior uncertainty to assess the uncertainty reduction a set 
of new measurement sites will contribute.

𝐽VW = X
GY)

Z

X
IY)

"

𝐶A[\

Uncertainty reduction = 1 −
]̂_`

^_` abc`
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Incremental Optimisation

§ Solves for one site at a time.
§ Starts off by finding the first site to add to the existing network that 

reduces the uncertainty by the most.
§ Keeps adding the best of the remaining sites to the network until the 

required uncertainty reduction or network size is reached.
§ Works well for observation network designs.
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Transport Model

§ FLEXPART version 10.3 – Lagrangian Particle Dispersion Model
§ The meteorology driving the LPDM is generated by the European 

Centre for Medium-Range Weather Forecasts ERA-Interim 
meteorological analyses.

§ Releases parcels of air from the receptor sites and runs backward in 
time to determine sensitivity to each source. 

§ 60 000 released every 3 hours, and parcels remain live for 10 days.
§ The sensitivity, which is expressed in residence time, converts a flux 

into a mass concentration.
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Sensitivities
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Prior Biogenic CO2 Flux Uncertainties
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Prior CO2 Fossil Fuel Flux Uncertainties
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